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Abstract  With several rice genome projects approaching completion gene prediction/finding by computer algorithms
has become an urgent task. Two test sets were constructed by mapping the newly published 28,469 full-length KOME rice
cDNA to the RGP BAC clone sequences of Oryza sativa ssp. japonica: a single-gene set of 550 sequences and a multi-gene
set of 62 sequences with 271 genes. These data sets were used to evaluate five ab initio gene prediction programs: RiceHMM,
GlimmerR, GeneMark, FGENSH and BGF. The predictions were compared on nucleotide, exon and whole gene structure
levels using commonly accepted measures and several new measures. The test results show a progress in performance in
chronological order. At the same time complementarity of the programs hints on the possibility of further improvement and

on the feasibility of reaching better performance by combining several gene-finders.
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1 Introduction

Rice is the most important staple food for more than
half of the world population. It is critical for the sus-
tained development of mankind to increase the produc-
tion and to improve the quality of rice. At the same
time the rice genome is the smallest and most compact
among those of cereal crops. This makes rice a model
organism for monocotyledonous plant as compared to
dicotyledons such as Arabidopsis thaliana. Therefore,
the sequencing of the rice genome is undebatably of
primary interest. With several rice genome sequencing
projects!! =3l approaching completion*~7! finding genes
in the rice genome has become an urgent task. However,
in contrast to gene prediction in mammalian genomes
relatively few programs have been devoted to plant
genomes (see, e.g., a recent review on computational
gene finding in plants[s]). The lack of commonly ac-
cepted test sets has also been felt as an impeding factor.

Computational gene finding started in the early
1980s, though workable gene prediction programs for
eukaryotes appeared only in the 1990s, see the compre-
hensive review by Solovyev[®. The first eukaryotic gene
finders may be divided into ab initio and similarity based
programs. The ab initio programs are based on gene

gene prediction, rice genome, test sets, accuracy measures, hidden Markov models, dynamic programming

structure models with parameters learned from training
set and do not use similarity information from search-
ing databases of known proteins, ESTs and cDNAs. One
should admit that significant progress of ab initio gene
prediction has not been observed in the last few years.
Instead there have been much efforts in finding genes
by comparative genomics (dual-genome predictors such
as SGP-2, TWINSCAN, or SLAM as reviewed in [10])
or by combining the predictions of several gene-finders
such as GeneComber!'!! or Combiner[2!.

However, comparative genomics gene prediction can-
not be effectively used for the rice genome at present
because the only other plant genome sequenced so far is
that of A. thaliana. The latter is too distant from rice
as evidenced by the great number of rice genes that do
not have homologs in A. thaliana (so-called NH genes!!]
was estimated to make 1/3 of the rice genes). Conse-
quently, ab initio gene prediction programs based on a
single genome necessarily remain important annotation
tools for rice and the evaluation of these programs may
be very instructive for their improvement. Furthermore,
the feasibility of combining outputs of several gene pre-
dictors may be elucidated only after proper evaluation
of the available programs. Therefore, we concentrate on
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ab initio gene-finders for the rice genome and construct
data sets for their evaluation.

2 Test Data Sets

For testing gene prediction in the human genomic se-
quences there exist a few frequently used data sets. The
1996 Burset-Guigé ALLSEG set contains 570 single-
gene multi-exon sequences!’3]. The 2000 Guigé set
h178[' contains 178 single-gene sequences and a semi-
artificial multi-gene set SAG42 was constructed by using
the h178 genes and inserting random “intergenic” seg-
ments. The 2001 HMR195 set[!5] emphasized on avoid-
ing overlaps with the training data. These data sets
have been in use until recent time. We note that there
has not been a test set of natural and verified multi-gene
sequences.

As for plant genomes Kleffe et al.['] constructed two
sets GBEzm and GBEat. The former contains 46 maize
genes with 250 exons and 204 introns and the latter
contains 131 A. thaliana genes with 709 exons and 578
introns. These data were produced even before the A.
thaliana genome was completely sequenced. The genes
in A. thaliana were predicted!” by combining several
programs (GeneMark, XGrail, GeneFinder, GENSCAN
and Netplantgene) and tested by an unpublished collec-
tion of sequences with 100 experimentally verified genes.
The training data set of the rice gene-finder GlimmerR
(see below) was described in [18] but it was tested on
the training data and on a single GenBank sequence not
included in the training data.

Therefore, the construction of high-quality test sets
for the rice genome remains an actual and urgent task.
We address this task in what follows. We first charac-
terize the two test sets OsSNG550 and OsMTG62 and
then describe how they are obtained and how well they
represent the “bulk” data. These data sets are available
from the BGI-RIS web sitel™.

2.1 Single-Gene Data Set

The single-gene set OsSNG550 contains 550 genomic
sequences of length 1,093 to 10,708 bases. Each se-
quence contains a cDNA-verified gene. There are 431
multi-exon genes and 119 single-exon genes. The total
number of exons are 2,534. All the 1,984 introns have
the canonical minimal splicing signal GT—AG to fit the
present-day gene prediction programs that ignore non-
canonical splicing.

2.2 Multi-Gene Data Set

The multi-gene set OsMTG62 contains 62 sequences
of length 10,813 to 42,698 bases with a total of 271 genes.
Each sequence contains 4 to 8 genes. There are 53 single-
exon genes among the 271.

We note that this is the first set of natural, i.e.,

not semi-artificial, multi-gene test sequences ever con-
structed for eukaryotic genomes.

2.3 Construction of the Data Sets

The rules we followed in constructing a test set are
listed below:

1) it consists of experimentally, i.e., cDNA confirmed
genes;

2) the characteristics of the set is representative of
the bulk data on average;

3) the collection of sequences has minimal overlap
with possible training data of the programs to be tested.

The publication of the KOME!?! full-length rice
cDNA provides an ideal opportunity to construct test
sets to satisfy the above requirements as stringent as
possible. Though said to be full-length, the KOME cD-
NAs may still contain erroneous or unexpected factors
(see, e.g., recent comments[20]) which are not consid-
ered in the common gene-finding software. The current
gene prediction programs are designed to detect “stan-
dard” protein-coding genes. Before all the KOME cD-
NAs are fully annotated and understood, we must filter
the KOME data to get a reliable subset to commence
with.

We start from the 28,469 cDNAs and proceed as fol-
lows.

1) Seek the best Open Reading Frame (ORF) by dy-
namic programming for each cDNA, assuming that there
is always a complete gene structure including the start
and stop codons, regardless of the fact that a cDNA may
just be a non-coding gene or various flaws may distort
its structure as a coding gene. A cDNA will be discarded
if the longest ORF is less than 300bp. A total of 21,545
cDNAs remain after this step.

2) Map these cDNAs with ORF determined to the
BAC sequences downloaded from GenBank in February
2003. Those BACs including long runs of Ns were split
at these gaps in order to insure that possible introns
would not contain Ns. We require more than 95% match
of the full cDNA length. A ¢cDNA will be discarded if
part of its CDS drops off the aligned region or if there
are indels not located in prospective introns. All short
“introns” less than 60 bases were considered as indels
and discarded. In other words minimal intron length in
what left is 61 bases. Then we check for redundancy by
using BLATPY. If two ¢cDNAs overlap more than 100
consecutive bases the shorter one is discarded. A total
of 10,697 sequences remain after this step.

3) Since 5% mismatch was allowed in the above
step, there were sequences which contain in-frame stop
codons, incorrect start or stop codons, non-canonical
(i.e., not GT—AG) splicing sites, etc. These sequences
were dropped. In addition, a few sequences with possible
alternative splicing were also discarded. In order to
guarantee that the test data do not overlap with pos-
sible training data of the programs to be tested we
aligned the remaining cDNAs with all rice cDNAs in
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GenBank Rel. 132 (October 15, 2002) using BLAT
again. Any cDNA with more than 100-base overlap with
known cDNA was dropped. A total of 7,455 single-gene
sequences were kept after this step.

4) Then we proceeded to insure that these cDNAs do
correspond to some known proteins to a certain extent.
First the translated cDNAs were aligned against the pro-
teins of A. thaliana by BLAST[??! using a cutoff E-value
less than 10~7. We found 5,548 cDNAs with homolog to
the A. thaliana proteins and 1,907 without homolog to
the latter. In terms of the abbreviation used in [1] the
7,455 cDNAs consist of 5,548 WH genes and 1,907 NH
genes. From the 5,548 WH genes 500 were randomly
sampled to make a major part of the OsSNG550 data
set.

5) Among the 1,907 NH genes 885 were further
aligned with other plant proteins, 540 with proteins of
other non-plant organisms and 482 had no alignment.
Then 50 genes were randomly sampled from the 1,425
(= 885 + 540) sequences and added to the OsSNG550
set.

550 genes in the single-gene set
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The construction of the set of multi-gene sequences
had to be started with the 10,697 sequences left after
the second step above. Our main concern was that
there should not be actual genes in the seemingly “inter-
genic” regions as the collection of KOME cDNAs covers
only a limited portion of rice genes. We took all “in-
tergenic” regions from the multi-gene sequences. These
were first aligned with the 123,443 public ESTs of the
NCBI dbEST (October 2002) and all known rice cDNAs
(GenBank Rel. 132). When matched bases are greater
than 90% of the sequence length it is disqualified. Then
the remaining sequences were aligned with all rice pro-
teins and A. thaliana proteins in GenBank Rel. 132 us-
ing BLAST with an E = 10~7 cutoff. Only 1,318 multi-
gene sequences were left of which 62 sequences contain
more than 4 genes and they comprise our OsMTG62 set.
Due to the limited number of sequences we have to be
content with the fact that some non-canonical splicing
sites remain. In fact, there are 20 non-canonical sites
in 15 genes. These are slightly higher than the ratio of
non-canonical splicing in the bulk data (about 1%).

271 genes in the multi-gene set
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Fig.1. GC content of the test sets. (a) OsSNG550 set. (b) OsMTG62 set.
Table 1. Comparison of Exon and Intron Characteristics in the Bulk Data and Test Sets
Data sets Bulk data Test sets
KOME WH KOME NH OsSNG550 OsMTG62
Seq number 5,548 1,425 550 62
Gene Number 5,548 1,425 550 271
Intron Number 22,293 3,984 1,984 1,102
max length 19,575 12,171 15,100 8,143
mean length 395 387 426 380
Exon Number 27,841 5,409 2,534 1,373
max length 4,284 4,032 2,742 3,462
mean length 247 273 255 243
Init Exon Number 4,374 942 431 218
max length 3,907 2,286 2,742 2,412
mean length 319 316 327 299
Intr Exon Number 17,919 3,042 1,553 884
max length 2,646 2,290 2,646 1,619
mean length 150 159 151 154
Term Exon Number 4,374 942 431 218
max length 3,730 2,174 2,390 1,649
mean length 321 295 322 298
Sngl Exon Number 1,174 483 119 53
max length 4,284 4,032 2,685 3,462
mean length 1,170 862 1,114 1,265
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Keeping a few non-canonical splicing sites makes the
data more realistic as true biological sequences are not
that ideal.

2.4 Average Characteristics of the Test Data
Sets

In order to show that the test sets do represent the
“bulk” data on average we consider the GC content and
intron/exon size of the genes in the test data.

It was first observed in the rice draft genome that
the exon GC content distribution showed a two-peak
feature, see Fig.3 in [1]. This has been further verified
on the collection of more predicted genes and the KOME
cDNAs. Fig.1 shows the distribution of genes by their
GC content for the 550 and 271 genes in the OsSNG550
and OsMTG62 data sets respectively. Both curves do
exhibit the two-peak feature.

The comparison of exon and intron characteristics
in the test sets with that of the bulk data is given in
Table 1. Here the two groups of bulk data refer to the
5,548 WH genes and the 1,425 NH genes that have been
selected from the 28,469 KOME!'®! ¢DNAs as described
above. The test data do represent the bulk data on
average.

3 Programs Tested

We compare five gene prediction programs:
RiceHMM, GlimmerR, GeneMark.hmm, FGENESH,
and BGF. All these programs look for multiple genes
on both DNA strands. They are summarized in Table 2
and a short description of each program follows.

Table 2. Programs Used in This Work

Program Version Trained on  Last update
RiceHMM Rice Aug. 2002
GlimmerR 1.0 Rice 2001
GeneMark 2.2a Rice May 2002
FGENESH 2.0 Monocots 2002

BGF 1.01 Rice Aug. 2003

RiceHMM is “based on probabilistic model us-
ing a catalog of rice ESTs” (Sakata et al., 1999)123].
It was trained on rice data and the algorithm and
parameters of RiceHMM was last updated in Au-
gust 2002. A web service is available at http://rgp.
dna.affrc.go.jp/RiceHMM /index.html

GlimmerR['®] is a specific version of eukaryotic gene-
finder GlimmerM?4 trained specially for rice. Glim-
merM was originally developed for Plasmodium fal-
ciparum by modifying the microbial gene identifica-
tion program Glimmer 2.0%°! which was based on In-
terpolated Markov models. GlimmerR may be ac-
cessed via the GlimmerM webpage at http://www.
tigr.org/tdb/glimmerm/glmr_form.html

GeneMark.hmm (Borodovsky and Lukashin, unpub-
lished) is an HMM-based program as its name hints
on. It runs in parallel with the eukaryotic version
of GeneMark[?%l which was first developed for gene-
finding in prokaryotic genomes. GeneMark.hmm was

The
biol-

updated for the rice genome on May 10, 2002.
web page of GeneMark.hmm is http://opal.
ogy.gatech.edu/GeneMark /eukhmm.cgi

FGENESH[P" is an HMM-based ab initio gene struc-
ture prediction program. It was described in [9] and ref-
erences therein. The version 2.0 we used was trained
on monocotyledons (corn, rice, wheat, and barley),
but the training details are not available. The Syn-
genta groupl? used it to produce 87% of all high-
evidence predicted genes and the BGI group!! esti-
mated it as “by far the most accurate of 5 programs
tested” on the rice draft genome when BGF was still
under development. The FGENESH home page is
http://www.softberry.com/berry.phtml

BGF (Beijing Gene Finder) is based on hidden semi-
Markov model and dynamic programming. Though hav-
ing an overall structure similar to that of GENSCAN
many distinctive features have been added in its imple-
mentation. For example, its signal search and enhance-
ment strategy has been described in [28-30]. BGF is
written in C++ using the Standard Template Library
(STL). Evaluation version of BGF has been made public
since the publication of the BGI-RIS[) — the Rise In-
formation System RIS® of BGI. It was trained on public
data available by the end of 2002, producing parame-
ters for two GC isochores. BGF has also been trained
for the silkworm Bombyzr mori genome. Genomic se-
quences may be submitted to BGF for gene-finding at
http://bgf.genomics.org.cn/

We did not include GENSCANDB32 in the compar-
ison as there was only a version trained on early maize
data. However, GENSCAN was perhaps one of the first
and best ab initio hidden semi-Markov model and dy-
namic programming based gene-finders for the human
genome and its architecture has been instructive for
many subsequent gene prediction programs, including
RiceHMM, FGENESH and BGF. It is worth mention-
ing that when tested on rice genomic sequences GEN-
SCAN’s overall performance on multi-gene sequences
is quite impressive, see Table 10 below. GENSCAN’s
homepage is http://genes.mit.edu/ GENSCAN.html

4 Prediction Accuracy Measures and Test
Results

We evaluate the accuracy of gene predictions at four
levels: the nucleotide level, the exon level, the whole-
gene structure level, and the multi-gene sequence level.

4.1 Nucleotide Level

At the nucleotide level there are some commonly ac-
cepted measures!'316:33] which are defined without am-
biguity. We follow these definitions and list them for
reference. A prediction is compared with the actual sit-
uation in the test set base by base. Nucleotides may be
predicted as coding or non-coding. The total number of



450

Table 3. Test Results at the Nucleotide Level
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Table 4. Predicted Number of Exons in Each Class in the

Program Single-gene set Multi-gene set Single-Gene Data Set OsSNG550. AE = Actual Exon number.
OsSNG550 OsMTG62 The ratios given in the table are the TE/PE values.
Sn Sp cC Sn Sp cc Class Initial Internal Terminal  Single Total
RiceHMM 0.70 0.81 0.66 0.69 0.68 0.61 AE 431 1,553 431 119 2,534
GlimmerR 0.69 0.83 0.66 0.61 0.64 0.54 RiceHMM 123/544 321/964 124/600 17/105 585/2,213
GeneMark 0.91 0.89 0.85 0.91 0.79 0.80 GlimmerR 173/450 569/751 143/450 56/415  941/2,066
FGENESH 0.96 0.93 0.92 0.96 0.82 0.86 GeneMark 222/606 1,237/1,829 185/336  36/72 1,680/2,843
BGF 0.97 0.94 0.93 0.96 0.83 0.86 FGENESH 288/408 1,363/1,674 322/442 72/107 2,045/2,631
BGF 302/411 1,372/1,679 315/389  64/87  2,053/2,566

of coding nucleotides is denoted by PP (Predicted Pos-
itive), that of non-coding ones contributes to PN (Pre-
dicted Negative). The corresponding numbers in the
test set are AP (Actual or Annotated Positive) and AN
(Actual or Annotated Negative). If a predicted base ac-
tually falls in a coding segment it is counted as TP (True
Positive), otherwise it is FP (False Positive). Similarly
we have TN (True Negative) or FN (False Negative).
We have clearly

AP =TP+FN, AN = TN + FP;
PP = TP+ FP, PN = TN + FN.

Then sensitivity S,, and specificity S, of the predic-
tions are defined as

TP TP B

B g _ TP TP
AP~ TP+FN’ "7~

S, = . L —
PP~ TP+ FP

In order to measure the global performance of a gene-
finder at the nucleotide level one can use either the cor-
relation coefficient CC

(TP)(TN) — (FP)(FN)
C = (1)
V/(PP)(PN)(AP)(AN)

or the approximate correlation AC

Both CCand ACyield +1 when the predictions are cor-
rect, i.e., FP = FN = 0, and lead to —1 when the pre-
dictions are entirely wrong, i.e., TP = TN = 0. Since
it was observed that AC and CC are quite close in most
cases and CC has a probabilistic interpretation?! we
use C'C'in this paper.

Test results on the nucleotide level are shown in Ta-
ble 3 for the single-gene set OsSNG550 and multi-gene
set OsMTG62. For all the programs the performance
on the multi-gene set is slightly lower than that on the
single-gene set.

4.2 Exon Level

The prediction accuracy at exon level is more impor-
tant from a practitioner’s point of view, e.g., for primer
or probe design. We know the number of Actual ex-
ons (AE) from the annotated test set. The number of
predicted exons (PE) comes directly from the program.
However, it is more subtle to define a true exon (TE),
since unlike the nucleotide case an exon prediction may
often be partially correct. We take a stringent attitude
in defining TE, namely, we only count an exon as TF
when it has both beginning and ending positions and,
naturally, the length, coinciding with that of the actual
one. Having AF, PE, and TE at hand we define sensi-

AC = l( TP + TP + TN + tivity ES, and specificity ES, at the exon level:
2\TP+FN TP+ FP TN+ FP
TN ) £s TE ES TE
TN + FN " AR’ " PE’
Table 5. Sensitivity and Specificity of Predictions for Various
Classes of Exons in the Single-Gene Data Set OsSNG550
Program Initial Internal Terminal Single Total
ES, ESp ES, ESp ESn, ESp ES, ESp ES, ESp
RiceHMM 0.28 0.15 0.21 0.23 0.26 0.15 0.13 0.13 0.23 0.26
GlimmerR  0.24  0.22 0.33  0.68 0.24 0.22 0.45 0.08 0.37  0.46
GeneMark 0.61  0.47 0.72  0.63 0.60 0.48 0.66  0.51 0.66  0.59
FGENESH 0.69 0.61 0.84 0.71 0.72 0.72 0.70 0.54 0.81 0.78
BGF 0.70  0.63 0.85 0.76 0.76  0.76 0.75  0.49 0.81 0.80
Table 6. Predicted Number of Exons in Each Class in the Multi-Gene Data Set OsMTG62.
AE = Actual Exon Number. The ratios given in the table are the TE/PE values.
Class Initial Internal Terminal Single Total
AE 218 884 218 53 1,373
RiceHMM 61/395 186/804 57/392 7/52 311/1,643
GlimmerR 52/236 293/431 52/236 24/299 421/1,202
GeneMark 134/285 637/1,016 130/273 35/689 936/2,263
FGENESH 150/244 741/1,051 157/244 37/69 1,085/1,608
BGF 152/240 754/998 166/239 40/82 1,112/1,559
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Table 7. Sensitivity and Specificity of Predictions for Various
Classes of Exons in the Multi-Gene Data Set OsMTG62

Program Initial Internal Terminal Single Total
ES, ESp ES, ESp ES, ESp ES, ESp ESn, ESp
RiceHMM 0.29 0.23 0.21 0.33 0.29 0.21 0.14 0.16 0.23 0.19
GlimmerR  0.40 0.38 0.37 0.76 0.33  0.32 0.47 0.13 0.31 0.35
GeneMark 0.62  0.37 0.80 0.68 0.43 0.55 0.30 0.50 0.68  0.57
FGENESH 0.69 0.71 0.88  0.81 0.75  0.76 0.61  0.67 0.79 0.67
BGF 0.70  0.73 0.88 0.82 0.73 0.81 0.54 0.74 0.81 0.71

For the time being exons are subdivided into four
classes: initial, internal, and terminal exons in multi-
exon genes plus exons in single-exon genes. Due to lack-
ing of training data and statistical analysis introns and
exons in the 5-UTR and 3’-UTR are not treated in the
programs tested, not to mention the proposal to divide
exons into 12 classes®¥]. Since the performance of gene-
finders differs for various classes we list separately the
AFE, PE, and TF in Tables 4 and 6 for the OsSNG550
and OsMTG62 sets, respectively.

Table 8. Wrong and Missing Exons in the Two Test Sets

Program OsSNG550 set OsMTG62 set

WE ME WE ME
RiceHMM 0.25 0.37 0.46 0.38
GlimmerR 0.20 0.35 0.37 0.43
GeneMark 0.17 0.09 0.26 0.12
FGENESH 0.09 0.05 0.21 0.07
BGF 0.07 0.05 0.18 0.06

Using the AE, TE and PFE values given in these ta-
bles one can easily calculate the exon sensitivity ES,
and exon specificity ES, for each class of exons. Given
in Tables 5 and 7 are these measures for exons in the
two data sets OsSNG550 and OsMTG62, respectively.

We note that the rice genome has much more single-
exon genes (from 20% in low-GC genes to 40% in high-
GC genes) than the human genome.

Not trying to define a mutually exclusive set of var-
ious partially correct exons, we emphasize only on the
number of Wrong Erons and the number of Missing Fx-
ons. An actual exon is counted as missing if it does
not have a single base predicted. A predicted exon is
counted as wrong if no single predicted base is present
in the actual exons. These are again stringent, all or
none, measures. To be precise, we define

No. of missing exons No. of wrong exons

ME =

No. of actual exons ’

The scores WE and ME are given in Table 8.

4.3 Whole Gene Structure Level

At the whole gene structure level there are many
more diverse cases of partially correct predictions. For
example, actual genes may be split or joined in the pre-
dictions. Instead of attempting to define a mutual ex-
clusive set of partially correct predictions we again take
a very stringent attitude to evaluate the performance
of gene-finders at the whole gene structure level. A
predicted gene is said to be a Right Gene (RG) only
if it coincides with the annotation 100% with all the

~ No. of predicted exons’

start, stop, and splicing sites correctly determined as
compared to the cDNA mapping to genomic sequences.
Likewise a gene is considered as a Missing Gene (MG)
if no single base has been predicted. The results are
summarized in Tables 9 and 10 for the single-gene set
OsSNG550 and multi-gene set OsMTG62, respectively.

Table 9. Number of Correctly Predicted (RG), Partially
Predicted (PG) and Missing (MG) Genes Among
the 550 Actual Genes in the Single-Gene Set OsSNG550

Program RG PG MG
BGF 237 (37) 308 5
FGENESH 231 (28) 315 4
GeneMark 116 (16) 418 16
GlimmerR 86 (21) 453 11
RiceHMM 44 (3) 492 14

The numbers given in parentheses in the first
columns in Tables 9 and 10 show the numbers of right
genes predicted only by the specified gene-finder only,
but not by any other programs. This shows the com-
plementarity of these programs and indicates on the
feasibility of combining predictions from different gene-
finders to improve the overall performance. If one count
the total number of right genes predicted by at least
one program, it is 332 and 163 for OsSNG550 and
OsMTG62, respectively. It is interesting to note that
332/550 ~ 163/271 = 0.60.

4.4 Test on Multi-Gene Sequence Level

Having a multi-gene test set at hand we are in a
position to evaluate the gene prediction on the whole
sequence level. In accordance with our stringent require-
ment among the 62 multi-gene sequences we count the
number of sequences whose all genes were predicted en-
tirely correct. Although there is no guarantee that the
regions annotated as “intergenic” are free of genes we
assume that they are all true intergenic regions. Among
the 62 sequences only 5 were correctly predicted by one
or more programs. The results are given in Table 11
where 1 stands for correct prediction.

An example of gene prediction at the multi-gene se-
quence level is given in Fig.2. This figure was produced
by using the gff2ps softwarel®®. Note that the arrows
indicate the direction of transcription.

In principle, one can go on to test the gene-finders
on un-annotated genomic sequences. Since there is no
objective reference for the accuracy of predictions on
these sequences we have to rely on mutual consistency
of the programs. To prepare for such test in the future
we study the mutual consistency of the six programs on
the single-gene set OsSNG550.
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Table 10. Number of Correctly Predicted (RG), Partially Table 11. Correct Predicted Sequences in the OsMTG62 Set
Predicted (PG) and Missing (MG) Genes Among Sequence RiceHMM GlimmerR GeneMark FGENESH BGF
the 271 Actual Genes in the Multi-Gene Set OsMTG62 MTO000018 0 0 1 0 1
Program RG PG MG MT000064 0 0 0
BGF 124 (14) 145 2 MT000636 0 0 1 1 1
FGENESH 114 (8) 155 2 MT000823 0 0 0 1 1
GeneMark 89 (9) 180 2 MT000943 0 0 0 1 1
GlimmerR 32 (4) 219 20
GENSCAN 31 (5) 221 19
RiceHMM 24 (0) 232 15
19:33:41
MT000943 2004-06-14
Annotation | = @8 =)
genscan - —] = t
RiceHMM oo f—y
GlimmerR o | R |
GeneMark | — l'—'.’—'::g 1=
feenesh .} L | ™ T3 L B3 :
bef | == -—:I—-—: =11 t
Annotation  [—e—— ;_I_"a 1
genscan g } T == -'+.
GlimmerR t I i:.
GeneMark  f———— — 442
feenesh | ; = : ' T
bgf = E_:l_l:eﬂ t
Annotation e [ E— E—‘_r&
genscan < =
RiceHMM = f
GlimmerR b — N m— |
GeneMark e T gy — f T
f._ i h T T L T L | 1 ]
bef = E—H& T
Annotation T
genscan y
RiceHMM t
GlimmerR
GeneMark v
fgenesh -+ 1 J I
bgf t ad

This plot has been obtained using gff2ps. The most recent version of gff2ps is freely available at
"http:/fwww Limim.es/software/gfftovls/GFF2PS. html". Copyright @ 1999 by Josep F. Abril & Roderic Guigo

Fig.2. Comparison of gene prediction by the six gene-finders on the test genomic sequence MT000943 in the OsMTG62 data set that

contains 4 genes. The annotation line shows the structure of the actual genes.

We calculate the correlation coefficient CCas defined  shown in Table 12. This is essentially a 7 X 7 symmetric
in (1) at the nucleotide level for each pair of programs normalized correlation matrix (we have included GEN-
treating one of them as the correct reference. The CCs  SCAN for completeness). Then a normalized distance
with the annotation are also included. The results are D between two programs is defined as D =1 — CC.

Table 12. Pairwise Correlation Coefficient (CC)
Annotation BGF FGENESH GeneMark GENSCAN GlimmerR RiceHMM

Annotation 1.00 0.93 0.92 0.85 0.60 0.66 0.66
BGF 0.93 1.00 0.95 0.87 0.62 0.65 0.68
FGENESH 0.92 0.95 1.00 0.86 0.61 0.64 0.67
GeneMark 0.85 0.87 0.86 1.00 0.63 0.61 0.65
GENSCAN 0.60 0.62 0.61 0.63 1.00 0.49 0.59
GlimmerR 0.66 0.65 0.64 0.61 0.49 1.00 0.54
RiceHMM 0.66 0.68 0.67 0.65 0.59 0.54 1.00

Using the distance matrix thus obtained we construct a “phylogenetic”
tree of the programs and the annotation as shown in Fig.3. We emphasize that
the closeness of two programs on the tree does not necessarily mean correctness
of their predictions as common false predictions would also increase the CC and
reduce the distance between programs. Nevertheless, Fig.3 agrees qualitatively
with the numerical evaluation carried out in the previous sections.

RiceHMM
GenScan

GlimmerR

Annotation
FGENSH

BGF
GeneMark.hmm

Fig.3. Relation among the 6 gene-
finders and the actual situation, i.e.,
the annotation, as defined by their

correlation distance (see text).
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5 Discussion

Summarizing the test results in the last section
we see that there has been a steady progress of ab
initio gene-predicting programs in chronological order.
Moreover, the five gene-finders may be grouped in two
sets: GeneMark.hmm, FGENESH and BGF have signif-
icantly better performance than RiceHMM and Glim-
merR. Roughly speaking, on the rice genome the accu-
racy of gene prediction reaches 90% at nucleotide level,
80% at exon level, and nearly 60% at the whole-gene
level as compared to 80%, 45%, and 20%, respectively,
for the human genomel®. We note also that rice gene
expression experiments at the Beijing Genomics Insti-
tute have revealed genes which have not been supported
by either EST or cDNA data, but do have been pre-
dicted by gene-finding programs. The seemingly better
performance of gene-predicting software on rice genome
is mainly caused by the smaller size and compactness of
the rice genome.

However, all these ab initio programs have their
drawbacks and limitations. The rich regulatory signals
in the flanking regions of genes are not fully taken into
account in locating the genes. They are not designed to
deal with pseudogenes and transposons, non-canonical
and alternative splicing sites, problems caused by frame-
shifts, etc. Their findings are necessarily biased towards
the type of genes in the training sets. In addition, the
complementarity of these programs also tells about the
importance of score balancing — both short signal scores
and long segmental scores — as the subtle differences
in the number of the 100% correctly predicted genes
may come from slight different ways of score-balancing.
Obviously, there is space for improvement of ab initio
gene-finding programs.
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